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ABSTRACT 

An inverse approach combining numerical and experimental results with full-field 

displacement measurements, will allow the identification of all the in-plane elastic 

properties from experimental tests. The off-axis tensile test was chosen, and in order to 

calibrate the numerical method an 8-harness satin weave glass fiber reinforced phenolic 

composite was selected. Instead the use of a non-destructive technique an alternative 

hybrid approach is proposed to obtain the field displacement. In this way a reference 

displacement field is generated by finite element method considering the loading and 

boundary conditions used in tensile tests and the mechanical properties obtained from 

experiments.  

In this work effort is made to develop a technique for nondestructive characterization 

of laminated composites. Elastic properties of the composite are determined through 

this approach using an inverse technique based on finite element analysis and 

evolutionary algorithm supported by the experimental results. Mechanical properties of 

composite develop a link between the load applied in off axis tensile test and 

displacement field. The implementation of surrogate model ANN (Artificial Neural 

Network) eliminates the exhaustive calculation of elastic properties and displacement 

fields. Using UDM (Uniform Design Method) set of design points is generated. This 

will enables a uniform exploration of domain values that will be used in the 

development of ANN (Artificial Neural Network) approximation model. 

Then, Reference displacement field is generated by FEM (Finite Element Method) 

taking into account the geometry of specimen, considering experimental loading and 

boundary condition. Experimental output data acquired for displacement field is 

providing as a reference in the optimization problem. The design variables of the 

optimization problem are the independent elastic engineering constants E1 

(Longitudinal), E2 (Transversal), G (Shear Modulus) and  Poisson’s ratio).    

 

Keywords: Elastic properties, composite materials, inverse formulation, genetic 

algorithm, displacement field 
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Chapter 1 
 

INTRODUCTION OF RESEARCH WORK 
 

1.1 Overview 

The successful illustrations of innovative materials developments are, composite 

materials based lighter viable aircraft, bio-materials used in orthopedic surgical 

procedure and acoustic absorbing foams optimization. One of the key to this innovation 

is the evaluation of accurate mechanical properties. Trustworthy, identification 

approaches to find constitutive material parameters are essential in various applications 

like accurate detection of strength of composite using micromechanical model, damage 

recognition in structural health observing and prediction of spatial distribution of tissues 

belongings for abnormal tissues finding in medical analysis. Classical compression and 

tension tests (direct methods) can be applied to determine only a limited mechanical 

properties through a single test including the supposition that materials are isotropic 

and homogenous. Conversely, for the adequate characterization of heterogeneous/non-

isotropic materials like composite, such identification techniques are more challenging 

[1]. Furthermore, this type of mechanical tests are incapable of identifying in-situ local 

mechanical properties in heterogeneous materials like reinforced composites/nano 

composites. Several literatures discovered that in-situ mechanical properties composite 

(constituent phases) are dissimilar from those determined in bulk material like result of 

manufacturing processes (consolidation/curing procedure) [2]. 

A very auspicious mode for concurrently finding mechanical properties of material is 

to implement an inverse approach together with full field measurement [3]. Many 

developments have been made to approximate mechanical properties using this 

technique. The most primitive and widely used inverse approach is based on FEMU 

(Finite Element Model Updating) strategy allows to rebuild unknown material 

properties from full field displacement / strain data. The Mixed numerical-experimental 

identification approach is an influential mean for cases where enough knowledge of 

geometry of specimen and boundary condition is obtainable.  
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1.2 Statement of Problem 

Parameter identification methods integrating optimization techniques and the finite 

element method (FEM), offer an alternative tool for material characterization. 

Conventional test methods for measuring elastic constants are often destructive and 

require multiple complex tests to acquire all data. Non-destructive methods to 

determine the effective elastic constants of composite plates can be based on static 

measurements [4], vibration testing [4] or on the measurements of ultrasonic wave 

velocities [5]. Static or quasi-static methods are generally based on direct measurement 

of strain components and calculation (by measuring loads and geometry) of stress 

components during mechanical tests (tensile, compressive, flexural, torsional, etc.). The 

development of methodologies using a single specimen for measuring all the in-plane 

elastic constants could result very advantageous. 

 Recently, an inverse method was developed [6] with the aim of identifying all the four 

engineering constants from the measurement of displacement field of a single square 

plate transversally loaded. The inverse techniques are based on the minimisation of an 

error functional which describes the discrepancy between experimentally measured and 

numerically calculated response values. 

1.3 Purpose of the Research 

The main objective of this work is to suggest a reliable inverse identification strategy 

both in term of their accuracy and computational time to identify mechanical properties 

of composite. To this end, an attempt is made to find out the preferable approach for 

the non-destructive characterization of laminated composites depending on laboratory 

facilities. On that reason, a static approach using the off-axis tensile tests and an inverse 

procedure based on the planning of experiments methodology, are applied for 

determination of elastic properties of laminated composite plates.  

The proposed numerical approach is based on FEA (Finite Element Analysis), EA 

(Evolutionary Algorithm) supported by experimental results. The idea is to determine 

the optimal estimation of the model parameters by minimizing a selected measure-of-

fit between the responses of the tested system and the numerical model. The objective 
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is to obtain the four independent elastic engineering constants for an orthotropic 

medium, based on the measurement of a heterogeneous displacement field. 

1.4 Theoretical bases and Organization 

The thesis is structured as follow. Chapter 2 explains inverse identification methods for 

material properties Chapter 3 tells about the non-destructive approach used in this 

research. Implementation of the inverse approach is discussed in the Chapter 4. Chapter 

5 is about the result and discussion, and research work is concluded in Chapter 6.   

Summary 

The suggested inverse approach will permit the identification of all the in plane elastic 

properties, combining numerical and experimental results with full field displacement 

measurements, from experimental trials. As an alternative, the use of a non-destructive 

technique an alternative hybrid approach is proposed to obtain the field displacement. 
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Chapter 2 
 

INVERSE IDENTIFICATION METHODS FOR 

MATERIAL PROPERTIES 
 

2.1 Difference between Direct Method & Inverse Problem 

With known input parameters and a reliable model the response of a complex system 

can be predicted. Such problems in which the response of a system is obtained with 

respect to the input parameters, is stated as a direct problem. Conversely, based on the 

system response and a given model the estimation of set of parameters is inverse 

problem method. A physical entity may be directly represented by many parameters, 

e.g. density, voltage, seismic velocity, mass or may be by coefficients and other 

constants of functional relationship which describes the physical system [7], [8]. A 

direct problem might be defined in a simplified form by assuming that a physical system 

is modeled through an adequately understood function g, given an input parameters p 

and collected output vector z: 

                                              𝒈 (𝒑)  +  𝝐 =  𝒛                                                             (2.1) 

Where error vector ϵ total is the sum of data and modeling error of the problem. Thus a 

process of calculating unknown parameters p given real measured output data for z is 

an inverse problem. An operator g takes the shape of linear or nonlinear system of 

algebraic equations, partial differential equation or ordinary differential equation. 

In mechanics, direct methods count the execution of standardized (conventional) 

experimental skills so as to define constitutive parameters of a specified material. A 

graphical explanation between displacement and load (stress/strain) can be obtained in 

such cases. There are always some types of unavoidable systematic and random errors 

which the final data contains in it. Some common examples of direct measurement 

methods like compressive and tensile test, 3-point/4-point bending tests, pure shear 

tests, biaxial tensile tests, etc. used in experimental mechanics. On account of 

electrostatics, direct problem is mentioned as a set of boundary value PDEs (partial 

differential equations) or unknown displacement field (U(x)) is referred in direct 
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problem, assuming that the geometry, mechanical properties and boundary conditions 

are known. Systematic representation of such problem is showed in figure 1.1(a). 

 

Figure 1 Direct & inverse identification in elasticity; (a) Direct Problem, (b) inverse problem of 

type 1, (c) inverse problem of type 2 

Taking into account the benefits of modernized mathematical techniques analytical 

techniques have been developed to calculate distribution of properties. However, such 

kind of closed form solutions can be implement for known boundary condition, simple 

geometry and simplified assumptions on material model [9]. 

In experimental mechanics, inverse problem falls into two main categories: (type 1, 

Figure 1b), the problems associated with identifying unknown constitutive parameters, 

(type 2, Figure 1c), in which constitutive equations parameters are assumed to be 

known. Inverse problem of type 1 classify the identification of material properties 

distribution. In such problems, observed data is taken as a given values, basically the 

displacement/strain fields U(x) or ϵ(x), external forces and boundary conditions. This 

case deals with stiffness tensor elements which represent the unknown mechanical 

properties by using boundary conditions with a set of overdetermined displacements. 

Therefore, one search error minimization in governing equations. Many inverse 

identification methods have been developed for residual minimization [10] 
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2.2 Inverse Problem Defies  

Lack of solution uniqueness is one of the main challenges in the inverse methods which 

means that many solutions might fulfil the optimality conditions given by the measured 

data [11]. Round-off error in calculations, noise in measured data and inexact direct 

model creates such situations in practice. It is vital to determine what solutions have 

been obtained, which of them are physically conceivable and maybe which of them are 

stable in different states of constraints. So, some important parameters that must be 

taken into account are solution existence, uniqueness and instability [12]. 

Solution existence: Inverse problems might contain no admissible set of parameters that 

produce the model exactly match the measured data. This may take place when the 

mathematical model is approximate, (i.e. does not contain constraints and exact 

boundary conditions) or consists of noisy measured data [12]. 

Solution uniqueness: There is no assurance that the solution is unique even if it is an 

exact solution. It shows that inappropriate solutions may fulfil Eq. 2.1. This is the case 

mostly in rank deficient discrete linear inverse problems and may direct to a biased 

estimated model [12]. 

Solution instability: Inconsistency of estimated model verses trivial changes of 

measurements is one of the major issue in inverse problems. They are mentioned as ill-

conditioning and ill-posedness in the case of discrete and continuous inverse problems. 

In 1902 Hadamard’s definition gave the concept of ill-posed and well-posed problems 

[12], so, if the solution of inverse problem is not unique or if the solution is discontinues 

function of data the inverse problem is considered as ill-posed. In practice, many factors 

in engineering might create ill-posedness of inverse problems based on following three 

categories: (i) imperfect forward problem (i.e. finite element or mathematical model) 

that might generate from inappropriate definition of boundary condition or incorrect 

mathematical models. 

 A part of modeling error which is produced due to the discontinuous measured data 

and availability at discrete points is called discretization error. Meshing/discretization 

of geometry in FEM and constitutive relationship as a linear combination lies within 

this category. The effect of discretization in inverse problem has been studied many 

time in literature [13]; (ii) approximation in numerical analysis (round-off errors) and 
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(iii) model inconsistency verses trivial perturbations of measured data (presence of 

noise). 

 Data errors exist inherently in measurement algorithm and experimental arrangements. 

These types of errors can be reduced by careful experimental setup, calibration or 

through statistical characteristic analysis, and become the source of uncertainty. 

When inverse process is ill-posed, additional information like physical or mathematical 

constraints must be implemented to alleviate the inversion process. Such a method 

which can be imposed to avoid unwanted oscillating behaviors of the solution is called 

regularization. Further important aspects will be discussed respectively [13]. 

2.3 Linear Elasticity Governing Equations 

Taking into consideration a deformable solid which is subjected to a couple of external 

traction T (1), T (2) and sustained by part of its external surface. Under static conditions 

basic governing equations to be solved in linear elasticity and changes into equilibrium 

equations [14], after neglecting the body forces (weight) and considering small material 

element, reads: 

                      𝑑𝑖𝑣. 𝜎(𝑥) = ∑
𝜕𝜎𝑖𝑗(𝑥)

𝜕𝑥𝑗
= 0 (𝑓𝑜𝑟 𝑖 = 1, 2, 3)𝑗=1,2,3                              (2.2) 

 

Figure 2 Stress component on a typical element of a deformable solid [12] 
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Where,  

 

Second-order stress tensor 𝜎 =  {𝜎 𝑖 𝑗} 

Position vector of a material point 𝑿 =  (𝑥1, 𝑥2, 𝑥3)
т 

Deformable body stress tensor component is depicted in figure 2.2. Strains are 

explained as: 

                                            

                                       𝜖 (𝑥) =  ½ 𝛻𝒖 (𝑥) +  𝛻𝒖𝑇 (𝑥)                                    (2.3) 

 

Where, u is displacement vector. Finally, Hook’s Law relates stress and deformation 

for a linearly elastic material like this: 

 

                                                      𝜎 𝑖 𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∈ 𝑘𝑙                                            (2.4) 

 

Cijkl = Symmetric fourth-order local stiffness (or elasticity) tensor having dependent 

coefficients which rely on material symmetry. The matrix shape of the stress strain 

relation for a specific case of isotropic material in a plane case of stress reduces to (with 

the usual definition of simplified indices for strain and stress): 11 →1, 22→2, 12→6 

 

 

                                            {

𝜎1
𝜎₂
𝜎₆
} = [

𝑄₁₁    𝑄₁₂    0
𝑄₂₁    𝑄₂₂    0

      0        0      𝑄₆₆
] {

𝜖₁
𝜖₂
𝜖₆
}                                    (2.5) 

 

Or 

 

                                                                      𝜎 =  𝑄𝜖                                                     (2.6) 

 

Where, Q = in-plane stiffness matrix and has following components; 

 

 

                                                    

{
 
 

 
 𝑄₁₁ = 𝑄₂₂ =

𝐸

(1−ѵ2)

𝑄₁₂ =  𝑄₂₁ =
ѵ 𝐸

(1−ѵ2)

𝑄₆₆ =
( 𝑄₁₁ −𝑄₁₂ )

2

                                          (2.7) 

 

 

 

After loading, the linear elastic material stored strain energy in it that can be obtained 

by integrating the strain energy density over the (V) volume. 

 

 

 𝑊 =
1

2
∫ 𝜎𝑖𝑗 𝜖𝑖𝑗𝑑𝑉𝑣

 

                                                                                                                                  (2.8) 

  =
1

2
∫ 𝐶𝑖𝑗𝑘𝑙 𝜖𝑖𝑗𝑑𝑉𝑣
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2.4 Techniques for Full-Field Measurement 

The analytical/numerical models and experimental results integration in inverse 

problem has given grow to the progress of various non-contact full-field measurement 

methods. Recently, the development in computer version and imaging systems 

(2D/3D), started the improvements of optical methods like moiré interferometry [15], 

ESPI (Electronic Speckle Pattern Interferometry) [16], speckle photography [17] and 

DIC (Digital Image Correlation in 2D and 3D) [18], [19]. These techniques are used to 

measure physical quantities like strains and displacements for a big number of discrete 

points inside a specimen and at the surface of specimen. The DIC is the most popular 

method due to its straightforwardness and simplicity among the other mentioned 

techniques. 

These measuring techniques are more advantageous because they can provide the 

requisite heterogeneous kinematics fields without damaging the material with a single 

trial. Consequently, this saves the time and money for sample preparation. Full-field 

measurement methods are able to capture inclusion localization and local phenomena 

such as stress concentration and damage, unlike point-wise techniques performed by 

displacement transducer and strain gauges. For finding modified polymer properties in 

a nano clay nanocomposites and in-situ mechanical properties like composite fiber-

matrix strength, such a large information is very important. Many unknown parameters 

can be consecutively recognized by using a single and undetermined setup and full-

field measured data. This is due to the reason that heterogeneous strain fields are 

influenced by a larger number of constitutive constraints than identical one. Using full-

field measuring technique, samples with any complicated geometry can be used in an 

in-situ mechanical testing without using a manufacturing standard coupons. The 

benefits of full-field measurement method and their uses to composite has been 

introduced by Grediac in [3]. 

Based on full-field measurement many inverse identification methods have been stated 

in literature for determining mechanical measurements of different models e.g. 

viscoelastic, elastic, hyperelastic, or even plastic models [20]. 

The next section introduce previous inverse identification techniques which are most 

commonly used (i) Virtual Fields Method (ii) Finite Element Model Updating  
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2.5 Full Field Measurements Based Identification Methods 

2.5.1 VFM (Virtual Fields Method) 

The Virtual Field Method based on the principle of virtual work to govern/find 

unknown constitutive parameters as represented by its name. Grediac proposed this 

method first time and has been successfully implemented to different mechanical 

characterization problems [21], [22], [23]. This method (VFM) has been theoretically 

proven similar to the Finite Element Method Updating (FEMU), as the first mentioned 

method gives maximum like-hood results and the second one is established rely on 

displacement gap minimization [20].  

Virtual Fields Method has the limitation, it uses displacement field differentiation to 

acquire the full-field strain measurements which might introduce uncertainty in the 

measurements. Regardless of this shortcoming, this method is more advantageous than 

the other identification methods because of both less computational efforts and 

decreasing the ill-posedness intrinsic in the practice [20]. This VFM is established on 

principle of virtual work by writing the global equilibrium of a body exposed to a 

particular load. Based on the virtual works, relevant equation is written by the applied 

load on various part of body, mentioned below: 

−∫ 𝝈 ∶  𝜖[𝒖∗] 𝑑𝑉 + ∫  𝑻 .  𝒖∗𝑑𝑆 + ∫ 𝒇 . 𝒖∗𝑑𝑉 =  ∫ 𝜌 𝒂 .  𝒖∗𝑑𝑉
𝑣𝑣𝑠𝑣

     (2.9) 

Where, 𝝈 = stress field, 𝜖[𝒖 ∗] = virtual strain field attained by differentiating virtual 

displacement field[𝒖∗], V= solid volume, T= external loading, S= surface, f= external 

body force/unit volume, 𝜌 = material density, a = acceleration. In the Eq. (2.9) left hand 

side integrals give the virtual work done by external and internal forces, while the right 

hand side is related to the inertial effects that are created by acceleration. The above 

mentioned basic equation may be implemented to the type of constitutive relationship 

of material and mechanical problem, which produce two types of approaches called as 

linear or nonlinear Virtual Field Method [24]. 

 If the aim is to find the constitutive law factors that has already been fixed with the 

supposition that  volume (V) is the deformation field, and quasi static applied load then 

a is negligible. Neglecting the body force and including the plane stress condition, 

substituting equation (2.4) into (2.9), we will get 
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                                    ∫ 𝑪 ∶  𝝐[𝒖 ̂
𝑣

]: 𝝐[𝒖∗] 𝑑𝑉 =  ∫𝑻. 𝒖∗𝑑𝑆
𝑠

                           (2.10) 

Where,𝝐[�̂�] = strain tensor, �̂� = measured displacements. Virtual field method has 

been used to inflate Eq. 2.10 using as many virtual displacement fields (independent) 

equal to the parameters (unknown). This leads to a (A.q = b) system of linear equation 

for a linearly elastic material which are used to directly calculate the unknown 

parameters. One of the key factors in this method is selection of a suitable data of test 

function, virtual displacement field functions has been selected from the infinite 

number of possibilities. Some specific conditions must be satisfied by test functions: (i) 

function must be differentiable, (ii) kinematically admissible (KA) and Co continuity, 

(i.e. must fulfill actual displacement B.C (boundary conditions).  

However, the main hindrance is related to the tactic for searching appropriately virtual 

fields which is an important aspects that explains the sensitivity of the virtual field 

method [25]. With a sensible choice of virtual fields, the constancy of techniques in 

contradiction of measurements noise increases. In point of fact, a higher independence 

of virtual fields, a lower sensitivity of the linear system to noisy data (and therefore to 

more reliable solutions) are proportional to each other. So-called special virtual fields 

[26], can be obtained automatically to ensure the independency of relative equations by 

rendering matrix (A) equal to the identity matrix which has been shown. Unlike 

intuitive selection of virtual fields, virtual field parameterization is necessary for special 

selection for which the unknown coefficients are obtained by imposing appropriate 

constraints well-suited the applied boundary conditions. The technique entails an 

optimization process combined with identification of optimum geometrical and testing 

arrangement suitable for a specified material.   

 The concept behind virtual field optimal choice was also given by Avril [25] to handle 

Virtual Fields Method, ill-posedness by reducing its sensitivity to noise. Furthermore, 

an approach established on piecewise virtual field was suggested for distinguishing 

heterogeneities in functionally classified material and defining local mechanical 

properties. In conclusion, it is stating that the Virtual Fields Method (VFM) has been 

lately exploited to determine solutions for inverse problems of identification of 

load/boundary conditions (type 2) [25]. 
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2.5.2 FEMU (Finite Element Model Updating Method) 

Finite element method (FEM) is one of the most dominant numerical tool to resolve 

solid mechanics problems. This type of analysis is denoted as forward or direct 

analysis. This can be implemented to calculate the inverse problem of type 1 (Figure 2 

(b)). The FEMU method is also recognized as Displacement Gap Method [27]. In 

FEMU method, material parameters put into the FE model are iteratively restructured 

relied on the contrast of corresponding yield data after their investigational counterparts 

and forward analysis (basically strain fields or displacements). The aim is to figure out 

the set of values that give the superlative match between real performances and 

numerical yields, took through experiments.  

To this end, optimization methods are exploited to reduce the inconsistency between 

experimentally calculated strain fields/displacement and numerically predicted (FE), 

relating to the mechanical properties in a “least square objective function” as: 

                        𝑟 (𝒑) =  ‖�̂� − 𝒖(𝒑)‖2𝑤 = (�̂� − 𝒖(𝒑))𝑇.𝑊 . (�̂� − 𝒖(𝒑))            (2.11) 

Where �̂� = measured displacement field, 𝒖 = displacement field (determined with the 

Finite Element Model (FE)), and W = symmetric positive definite weight matrix. 

Update the vector of model values p at every iteration until convergence is attained. 

Relevant algorithm rely on a gradient based optimization method is illustrated by figure 

2.3. The precision of the given value in the experimentally calculated data used in the 

optimization method rests strongly on the level of uncertainty. The most important 

disadvantage of the process is the requirement for an iterative computational 

development for modifying the sought data. This can be excessive when dealing with 

identification problems which include 3D FE models. Another disadvantage is related 

with the algorithm convergence which is mostly affected by some familiar factors such 

as material model, boundary conditions, optimization technique and sensitivity of 

algorithm to noisy calculated parameter.  

Unlike basic mechanical tests accomplished under the supposition of homogeneity of 

material, FEMU can be implemented to find the properties distribution in material with 

heterogeneous stress and strain fields. One of the benefits of the technique is that it does 

not need full field measurement on the entire field, therefore, using partial facts of 

displacement data the parameter identification can be conceded [28]. Certainly, inside 
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smaller region of interests inverse solutions are usually preferred as these could be more 

stable and give rise to less discretization error. 

 

 

Figure 3 FEMU updating algorithm 

 

 

Moreover, with intricate geometries and boundary conditions material models can be 

categorized taking the advantages of FE (finite element) simulation skills. Over the last 

decades, FEMU technique has been exploited in several systematic branches like 

medical application and structural dynamics [29], [30], [31] and is still being 

implemented to identify mechanical properties of material [32]. Meanwhile there is no 

limitation for constitutive equation, a wide range of behavior of material can be 

identified from elasticity to hyper visco-elasticity.  

For example, in linear elasticity Genovese determined elastic constants based on Phase 

Shifting (ESPI) measurements [33]. Elastic properties of a synthetic polymer plate 
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under plane stress conditions is determined by Cardenas Garcia by using displacement 

field obtained from moiré interferometry technique [34]. Similarly, four in plane elastic 

parameters of orthotropic composite are reconstructed by Lecompte which are 

subjected to biaxial loads. Conversely, except reducing the mismatch among the 

displacements, they took strains as output data. An optimization technique used for the 

identification of in plane elastic parameters of an eight ply woven composite was 

investigated by Genovese [35]. With the objective of finding visco-elastic parameters 

of wood based panels, an inverse method (mixed numerical experimental) was 

proposed by Magorou based on optical metrology and genetic optimization [36].  

Mechanical behavior of composite like toughness and strength depends on mechanical 

characteristic of constitutive phase, specifically at the matrix and reinforcement 

interface [37]. This important issue has arisen the development of many identification 

method for in-situ local mechanical properties. Kang has suggested an inverse/ genetic 

approach for interfacial identification of parameters [38]. After using GA (Genetic 

Algorithm) optimization approach, at interface region in planar matrix composite, shear 

and tensile mechanical properties were determined consist of failure information at the 

same region.  

An inverse method to evaluate mechanical properties of cohesive law of adhesive layer 

with the help of full field displacement [39]. It should be stated that there are some other 

model updating strategies in which forward problem could have closed form solution 

or can be performed through the alternative numerical approaches (boundary element 

method) [40].   

2.5.3 CEGM (Constitutive Equation Gap Method) 

Initially in FE (Finite Element), this approach was implemented for error estimation 

and then for elastic properties identification [41]. The objective of this method is to 

reduce the error in constitutive equation 2.4 through a criterion same as the following 

function: 

        𝝐 (𝑪, 𝝈, �̂�)  =  
𝟏

𝟐
∫ ( 𝝈 − 𝑪 ∶  𝝐 [ 
Ω

�̂� ] ) ∶ 𝑪−𝟏: (𝝈 –  𝑪: 𝝐 [�̂�]) 𝑑𝑉           (2.12) 

Where 𝑪−𝟏= compliance tensor (which deliberates physical dimension of energy to 

𝜖(𝑪, 𝝈, �̂�). Weight tensor 𝑪−𝟏smoothened the above functional error. The Constitutive 
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Equation Gap Method (CEGM) could be inferred as reducing the inconsistency 

between a provided 𝝈 (stress field) and other stress field coming from product of strain 

data and unidentified constitutive matrix. In reality, the above function is another way 

of reducing the sum of stress/strain energy potentials [14]. The beauty of the method is 

that it does not require the full field measured data for solution, but it integrates 

available data (full-field) to increase the reliability of acquired results. For example, to 

classify the C which is established on the experimental accessibility of stresses and 

displacement, following minimization problem is achieved. 

                                              𝑪 =  𝑚𝑖𝑛 𝒀 (𝑪 ∗)                                                   (2.13a) 

                                       𝒀 (𝑪 ∗)  =  𝑚𝑖𝑛 𝝐 (𝑪 ∗, 𝝈, �̂�)                                         (2.13b) 

Where, C = summation of admissible elasticity tensor. Recently a new development in 

Constitutive Equation Gap Method has been suggested in which optimized stress fields 

are built with the intention of minimizing experimental observation variance and then 

regulate the problem [42].  

2.5.4 EGM (Equilibrium Gap Method) 

The EGM (Equilibrium Gap Method) comprises of finding the parameters which reduce 

the errors in interior equilibrium equation in a bulk substantial [43]. Main objective of 

this method is to reduce the error in nodal forces taken from theoretically measured 

displacements. A reasonable form of equilibrium equation can be estimated using FE 

discretization by stating the displacement field with respect to nodal displacement 

interposed by some shape functions. The relation will take following form: 

                                                        𝑲 (𝒑) 𝒖 =  𝒇                                                  (2.14) 

Where, K (p) = stiffness matrix (function of known shape function), p = unknown 

elastic parameter, u = nodal displacement, f = external force vectors. So, the EGM 

(Equilibrium Gap Method) can be answered with following: 

                                          𝒇𝒓𝒆𝒔 −  ̂ 𝐾 (𝒑) 𝒖 ׀׀ =  𝒇 ̂  ׀׀
2
                                          (2.15) 

Where, �̂� = measured displacement field. This can be used to find the isotropic damage 

of materials and local reduction of properties. Mostly this method has been used to 
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repossess spatial elastic properties distribution within domain [44]. This can be used to 

find the isotropic damage of materials and local reduction of properties.  

2.5.5 RGM (Reciprocity Gap Method) 

It is the combination of Maxwell- Betti theorem and virtual field method [45]. Maxwell-

Betti theorem states, owing to second load, the work done by one load on the 

displacement is equivalent to the work done by second load on displacement owing to 

first load. Consider two elastic bodies which occupy the identical region and identified 

by two discrete elasticity distribution tensors C and C*, displacements fields �̂� and u*, 

tempted by traction distributions T and 𝑻 ∗. (𝒖 ∗, 𝑻 ∗) is auxiliary state mentioned as 

virtual/adjoint state.  

∫ ( 𝑻 ̂
𝑠 

. 𝒖∗  − 𝑻∗. �̂� ) 𝑑𝑆 = ∫ 𝝐 [ 𝒖∗
𝑠 

]: (𝑪∗ − 𝑪): 𝝐 [�̂�] 𝑑𝑉 = 𝑅 (𝑪∗ − 𝑪, 𝒖∗, �̂�)    (2.16) 

𝑅 (𝑪 ∗  − 𝑪, 𝒖 ∗, �̂�) = reciprocity gap. The assumption for this theorem is that if the 

elasticity tensor of two conditions are undistinguishable the reciprocity gap can appear. 

So, if C and C* are different by small disturbance. I.e.𝑪 ∗ =  𝑪 +  𝛿 𝑪, eq. 2.16 will be 

accomplished in which by reducing the reciprocity gap in an inverse unidentified elastic 

tensor can be repossessed. 

2.6 Comparison of Above Methods 

All identification methods discussed above are beneficial using large experimental data 

which is obtained from full field measurement. The CEGM and FEMU techniques do 

not need full field. FEMU is widespread among all because it does not require full field 

measurement on the whole domain and as a result the computational result for 

identification process is shortened. Furthermore, this strategy incomes from robustness 

of the FE method when sample with intricate geometries and boundary condition are to 

be considered. The main disadvantage is that it is computationally expensive and time 

consuming process particularly when dealing 3D models. On the other side, VFM and 

EGM utilize full field data within domain and give direct solution of inverse problem.  
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2.7 Optimization Methods  

For inverse problems many optimization methods have been introduced. They have 

three major groups: (i) derivative free optimization, (ii) gradient based optimization, 

(iii) hybrid optimization techniques.  

2.7.1 Derivative Free Optimization Method  

 Evolutionary Algorithm 

EA (Evolutionary algorithms) like GA (Genetic Algorithm) are established built on 

genetic descriptions and use iterative development to reduce unbiased function and 

develop initial results. In GA (Genetic Algorithm) every optimization value is denoted 

as “chromosomes” (individuals). The process is prepared by arbitrarily creating a 

population of m individuals. The objective function is calculated for the all individuals. 

Individual are then organized according to their objective function (fitness) values, like 

individual with smaller fitness values are located on peak. Then GA uses evolutionary 

approach, for instance development (mutation and crossover) or growth in population 

to expand it and make a novel generation. Maximum scoring individuals permit to the 

following generation without damage.  

Mostly, a greater population size suggests additional objective function assessments 

and an improved concluding solution. Conversely, they consist of time taking black-

box calculations, greater population size directs to extensive computational time. On 

the other side, small population possibly will directs to early convergence and 

suboptimal result. Quicker optimal results can be accomplished by the higher value of 

crossover rate. But again with very high value, this may be a premature convergence. 

The performance of inverse identification/genetic measures does not rest on initial 

solution.  

However, conventional GAs are computationally expensive, time consuming and have 

deficiency of indigenous search ability [38] [32]. To speed up the performance and 

procedures of GA, PGA (Parallel Genetic Algorithm) are introduced in 2003 [46]. 

These are of two types: (i) coarse grain method, (ii) goal method [47]. In coarse grain, 

population is distributed into many sub populations and every population grasps a serial 
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GA autonomously. Secondly, the global method contains single population in which 

individuals are divided into several cores to increase the assessment of objective 

function. Every individual accomplishes mutation/crossover actions and a global 

selection is performed over the complete population. It is also important to mention that 

EA (Evolutionary Algorithms) relates with experiential optimization approaches with 

global convergence classifications.  

 Direct search Algorithm   

It is based on the objective function during iterations and do not have need of 

guesstimate of these function gradient. Due to the reliability and flexibility, these 

functions are still very famous. These methods were established on sequential 

examination of experimental results created by a firm approach [48]. Nelder Mead 

Simplex Algorithm is a most commonly used algorithm in which objective function is 

done on a set of points that make a Simplex [49].  

GPS (Generalized Pattern search) is an alternative method applied for unconstrained 

optimization [50]. The drawback of GPS was further resolved by MADS (Mesh 

Adaptive Direct Search) [51]. The ideas used in both process is the same while Polling 

is quite different. MADS is for nonlinear optimization algorithms. Another feature of 

MADS is that it neglected infeasible trial points according to the given constraints 

during optimization process. Revisions have been conceded out that reveals MADS 

overtakes GPS [52]. 

2.7.2 Gradient Based Optimization Method  

The Conjugate Gradient, Gauss Newton, Levenberge Marquardt and the Trust Region 

are widely used Gradient Based Optimization Method in literature. Main objective of 

this method is its quick convergence in the locality of global minimum. 

 Nonetheless, its performance muscularly depends on initial solutions and it might 

easily fall in local minima if there is a lot of difference between initial guess and global 

minimum [53].  
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2.7.3 Hybrid Optimization Method  

It is a blend of both gradient based and derivative free method to improve the precision 

of solutions. The concept is to bring close global searching property (Derivative Free 

Algorithm) and high convergence rate (Gradient Based Method). Literature show the 

dominances of this approach in contrast with gradient based and derivative free 

techniques [54] 

2.8 Micromechanical Models 

The objective of homogenization method is to estimate the whole performance of 

heterogeneous materials through the mechanical properties of elements [55]. For 

fruitful homogenization in composite materials, geometrical and mechanical properties 

in addition to the morphology of constituents must be wisely determined. The HSB 

(Bound of Hashin Strikman), SCS (Self Consistent Scheme), MT (Mori Tanaka), TOA 

(Third Order Optimization), Lielens’s Model, primarily used for linear elasticity [56]. 

Numerically homogenization can be carried out through FFT (Fast Fourier Transform) 

and FE (Finite Element). Moreover, FEM (Finite Element Method) is user demanding 

due to problems come across during meshing. The main benefits of such type of 

material is that they give precise predictions, providing that they put on RVE 

(Representative Volume Element). It was established that the MT (Mori Tanaka) Model 

for fiber reinforced composite, TOA (Third Order Optimization) and Lielens’s Model 

for particle reinforced composites were extra precise than the further for approximating 

effective properties [57]. 

 

 

 

 

 

 



 

 

   

                                                                                                                          34 

                                                                                                                           

 

 

 

Chapter 3 
 

NON DESTRUCTIVE APPROACH USED IN THE 

RESEARCH 
 

The suggested inverse approach will permit the identification of all the in plane elastic 

properties, combining numerical and experimental results with full field displacement 

measurements, from experimental trials. As an alternative, the use of a non-destructive 

technique an alternative hybrid approach is proposed to obtain the field displacement. 

Since the off axis tensile tests observed in this work, displacement field obtained from 

experiment was substituted by numerically achieved nodal displacement values using 

the finite element approach (FEM).  

The mechanical properties of the composite create the connection between applied load 

to the displacement field and off-axis. The use of a surrogate model based on ANN 

(Artificial Neural Network) enables to establish the relationship between the elastic 

properties and the displacement field avoiding the exhaustive calculations based on 

FEM. In UDM (Uniform Design Method) design points are produced over a domain 

located on the mean reference data of random variables. UDM (Uniform Design 

Method) generated points are used as an input and output configurations, then ANN 

(Artificial Neural Networks) is recognized founded on evolutionary learning procedure 

[58].  

 3.1 Uniform Design Approach 

The objective of this guesstimate method, at the minimum cost, reveal the association 

between input and response variables. The important thing is to get a better idea of the 

predictable output to define the set of points appropriately. In literature [59] [60] [61] 

[62], an inaccuracy bound for the credible yield value is explained. This is a rate of 

inconsistency of response time deviation of established data that resolved the entire 

domain. Error will be small taking into account the disparity when even points are 

scattered on the limit of input variables.  

Therefore, uniformly distributed points are needed. The objective of the method 

proposed by Fang is to obtain the facts that are consistently spread in the s- dimensional 
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unit cube Cs [60] that is centered on quasi Monte Carlo approach. In reality, UDM 

(Uniform design Method) can be dignified as an experimental design with main idea of 

decreasing divergence. Here, divergence is the extent of “universally acknowledged 

uniformity “.  

Suppose P = set of points at Cs, for g = ( g1, g2, gs ) suppose N (g, P) = total hyper cube 

points [ 0, g1 ] * [ 0, g2 ] * ……[ 0, gs ]. The divergence of “P” is characterized as:  Ψ 

(n, P) = supgЄC
s  ׀N (g, P)/n - g1, g2, gs.I While N (g, P)/n = point’s percentage (lies in [0, 

g1] * [0, g2] * …… [0, gs]), with volume g1, g2, gs [69]. g1, g2, gs = percentage of volume 

covered by P. Ψ (n, P) is good when there is small difference between N (g, P)/n and 

g1, g2, gs. Un (q
s), represented a UDM (Uniform design Method) table, where U is 

uniform design, n is no. of samples, q = level of each input variables, s = max. No. of 

columns.  

There is an equivalent auxiliary table which comprehends a references of columns with 

fewer divergence for a given group of inputs [61]. Construction of UDM (Uniform 

design Method) table is given by: 

 For n calculate Hn = {h1, h2, h3} with m.d.c (n, hi) = 1 and hi <= n, i = 1…m, with 

m = Ф (n), where Ф is Euler function. Ф (n) = n (1 – 1/p1) (1 – 1/p2) … (1 – 

1/pt). 

 n = p1 p2 … pt is the prime decomposition. 

For s = distinct element of Hn, create n * s (table) where uij = ihj (mod n) for (i = 1… n 

and j = 1... s), 0< uij <=n,  

Finally the UDM (Uniform design Method) will be in the form with discrepancy

1189.0)(  n,P  in table A. [59] 

For each UDM design point, the longitudinal displacements, u, are obtained by FEM 

considering the specimen geometry, the experimental loading and boundary conditions. 

In the proposed approach the analysis is performed using the degenerated Amahd shell 

element [63]. The BC (Boundary Conditions) implemented to the numerical technique 

are in contract with the non-rotating testing machine grips and rigid support. 
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Table A:  UDM design points for discrepancy [55] 

 

UDM design points for discrepancy 

Ψ(n,P)=0.1189 

Design points 1 4 6 9 

1 1 11 15 25 

2 2 22 2 22 

3 3 5 17 19 

4 4 16 4 16 

5 5 27 19 13 

6 6 10 6 10 

7 7 21 21 7 

8 8 4 8 4 

9 9 15 23 1 

10 10 26 10 26 

11 11 9 25 23 

12 12 20 12 20 

13 13 3 27 17 

14 14 14 14 14 

15 15 25 1 11 

16 16 8 16 8 

17 17 19 3 5 

18 18 2 18 2 

19 19 13 5 27 

20 20 24 20 24 

21 21 7 7 21 

22 22 18 22 18 

23 23 1 9 15 

24 24 12 24 12 

25 25 23 11 9 

26 26 7 26 6 

27 27 17 13 3 
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3.2 ANN (Artificial Neural Network)  

The methodology used here is alike to the RMS (Response Surface Method). The 

objective of implementing ANN (Artificial Neural Network) is to overpower the 

difficulties interrelated with affluent assessment of operational dependability for the 

study of respond inconsistency. UDM (Uniform design Method) generated points are 

used as input and output arrangements to advance an ANN (Artificial Neural Network) 

placed on evolutionary learning technique. The input and output factors are random 

variable and bound state function, consistency and related sensitivities. [58] 

3.3 ANN (Artificial Neural Network) Topology Definition 

The recommended ANN (Artificial Neural Network) is arranged into three layers of 

neurons (nodes): (i) input layers, (ii) hidden layers, (iii) output layers. The term 

synapses is an association between input and hidden nodes, hidden and output nodes. 

These linkages develop connection between Di
inp (input data) and Dj

out (input data). In 

the proposed ANN (Artificial Neural Network), Dinp is expressed by a group of values 

“Л “, (a random variable), which comprehends strength and elastic properties of 

composites. 

 

 

Figure 1  Artificial Neural Network Topology 
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ANN (Artificial Neural Networks) is supplied by the input variables 1 2= [ , , , ]E E Y Sπ

that represent 1E (Longitudinal elastic modulus), 2E (transversal elastic modulus), Y 

(transversal tensile strength) and shear strength S, each group of values for the design 

variable vector   is labelled over and done with UDM (Uniform Design Method). 

The subsequent output data vector 
outD  encompasses the displacements, u, measured 

along longitudinal axis of symmetry of the specimen used in experimental tests. Figure 

4 displays the topology of the ANN (Artificial Neural Network), viewing input and 

output factors [58]. Each configuration includes of an input and output vectors, entails 

to be normalized to diminish numerical inaccuracy proliferation all over the ANN 

(Artificial Neural Network) learning procedure. Data standardization is 

 �̅� 𝑘 = (𝐷𝑘 –  𝐷𝑚𝑖𝑛) (𝐷𝑁 𝑚𝑎𝑥 –  𝐷𝑁 𝑚𝑖𝑛) / (𝐷 𝑚𝑎𝑥 –  𝐷 𝑚𝑖𝑛)  +  𝐷 𝑁 𝑚𝑖𝑛    (3.1) 

Where, 

Dk = real value of variable before normalization, D min = minimum values of 

normalization and D max = maximum value of normalization, correspondingly in input 

and output data. With respect to equation 2.18, the condition  𝐷𝑚𝑖𝑛 < = �̅� k <=

 𝐷𝑁 𝑚𝑎𝑥. . Relying on the input and output configuration, most commonly used 

various values of input output variable are 0.1 and 0.9. 

The synopsis of adapted signals is proficient through function, considered as an A(x), 

Activation Function.  Accordingly, using sigmoid functions the activation of kth node 

of hidden layer (p = 1), output layer (p = 2) is achieved as stated below: 

                                                   𝐴𝑘
(𝑝)
=  1/ (1 + 𝑒−𝜂(𝑝)𝐶𝑘(𝑝))                                         (3.2) 

Where, p = activation layer, this could be the hidden layer or output layer and C
k(𝑝) = 

component of C (p) which is provided by 

                                          𝑪 (𝑝)  =  𝑴 (𝑝) 𝑫 (𝑝)  +  𝒓 (𝑝)                                          (3.3) 

Where,  

M (p) = matrix of weights of synapses, r (p) = biases vector, D (p) = input data vector. 

𝐶𝑘(𝑝) is scaling function effect the sensitivity of sigmoid functions. In the neurons the 
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weights of synapses mij, and biases at the output and hidden layers are distinguished 

with the help of the learning procedure [58]. 

3.4 GA (Genetic Algorithm) 

These are search algorithms well-known as natural genetic and selection process.  

Based on “Darwinian Survival of fitness”, consecutive generations develop more fit 

entities. A GA (Genetic Algorithm) for a definite problem requisite following stages. 

 Genetic operators that are used for the offspring modification. 

 Method to produce an initial population of potential solutions. 

 Mention a genetic example for latent solution to problem.  

 Parameters value for application in the genetic algorithm. 

 An evolution function for rating evolution regarding to their fitness. 

In GA (Genetic Algorithm) every individual is characterized by fixed sequence of signs, 

programming a possible solution in an assumed problematic planetary. This 

interplanetary, contains all potential solutions of problem mentioned as a search space. 

Customary GAs (Genetic Algorithm) play with fixed length strings of symbol called as 

“chromosomes” and contain identical amount of entities (in consecutive generations). 

Every single positions in string is connected to a gene. Genes grouping, inhabiting a 

detached site in string, put forward the methodology of a detailed proposed problem.  

 In GAs (Genetic Algorithm), a gene can be represented by any sign, even though both 

for theoretical and practical accessibilities the ordinary numbers are typically used; for 

example {0, 1} is a binary gene. In a genetic algorithm, code is recognized either by 

length of string/gene beside it or through mapping between the potential solutions to 

the problem and string [64]. GA (Genetic Algorithm) starts with randomly created 

initial populations. A combinatory progression is performed with the implementation 

of selection, crossover and mutation (genetic operators).  

Every individual relating to initial population is evaluated and decoded with respect to 

some defined criteria represented as “fitness function”, ranking is performed afterward. 

After this in initial solutions the pair of string are arbitrarily selected and every single 

of them showing to crossover/mutation which produce off springs that will be 
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interpreted and then calculating their fitness. Afterward, a new ranking of solution is 

done and fitness individual will keep on creating the novel population.  

The portents will retain up until the junction is attained. Global optimum is considered 

as a solution when stopping criteria is defined and verified, decoded from 

“chromosomes” of fitness solution [64] [65]. 

3.5 GA (Genetic Algorithm) Problem Formulation 

In the framework of GA (Genetic Algorithm), every solution of a problem is 

enlightened with a group of c that are design variable, ai, which describe the order of 

real numbers A [66].  

                                               𝐴 =  𝑎1 ∗  𝑎2 ∗ . . .∗  𝑎𝑐, 𝑎𝑖 𝜖 𝐼𝑅                                        (3.4) 

Available solutions for ai is identified through restricting the size of their search 

interplanetary. Afterward, the programming for ai is developed and length of binary 

string, lci is set aside for ai is identified rendering to the succeeding equation:  

                                                               𝑙𝑖 =  2𝑙𝑐𝑖                                                        (3.5)  

Where, li = entire number of locations on binary strings regarding variable ai. For 

illustration of ai related to positon pi. This position is used to calculate the real value of 

result relating to the particular domain.  

                                  𝑎𝑖 =  𝑎𝑖 +  (𝑎𝑖 −  𝑎𝑖) / (𝑙𝑖 –  1)  ∗  𝑝𝑖                                      (3.6) 

Where, ai = lower limit, ai = upper limit of values estimated by the design variable ai. 

Chromosomes are obtained by encoding ai to binary codes which changes phenotype to 

string of bits [66].  

                               𝐴 (𝑡)  =  ∏ 𝑎𝑐
𝑖=1 𝐼 =  ∏ ( 𝑒 ∶ 𝑎𝑐

𝑖=1 𝑖 →  {0, 1})                              (3.7) 

An EA (Evolutionary Algorithm), (t = 0, 1, 2 ...) must have the ability to adapt the 

population of solution, A (t), to accomplish improved presentation in an iteration with 

the circumstances E. 

GAs (Genetic Algorithm) require info, I (t) related to the adaptation of population A (t) 

and to its surroundings E.  

                                          𝐺𝐴: 𝐴 (𝑡)  ∗  𝐼 (𝑡)  → 𝐴 (𝑡 + 1)                                          (3.8) 
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Initialization progression holds the establishment of introductory population of 

arbitrarily shaped chromosomes. Each chromosome is then designed regarding 

objective function, y (A), unveiling its elasticity to the settings in which it is rooted. 

GAs (Genetic Algorithm) increase fitness when it actuates and fitness function is 

described as: 

                                                         𝑓 (𝐴)  =  𝑘 –  𝑦 (𝐴)                                                 (3.9) 

Where, k = arbitrary huge positive assessment, that promises that the fitness f (A) 

certainly not becomes negative. 

After creation of randomly generated potential solutions the algorithm continues 

evaluating fitness and generate a new population with same size. From preceding 

individuals new population will be elaborated, after directing them to combination of 

genetic operators.  

Afterwards, offspring fitness is completed and solutions are equated with the reference 

values. The algorithm will end when solution values and reference values are close to 

each other [67].  

 

Figure 2  Genetic Algorithm Process Scheme 
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3.4 Elastic Properties Identification Using GA (Genetic 

Algorithm) 

 Problem Formation 

When a body is exposed to load, material point that vacates space point Qi originally 

will move to alternative space point Qi
*, so the associated displacement vector is 

articulated by �̅�(Qi), illustrated by Figure 6. 

 

Figure 3 Reference displacement u ̅(Qi), of point Qi and displacement  

 

Mechanical properties of material shown in table B, create relationships concerning the 

load applied to sample and displacement field. In numerical identification 

methodologies they act as design variables. The in plane characteristics are represented 

in GA by following sequence. 

 

                                𝐴 =  ∏ 𝑎4
𝑖=1 i =  𝐸1 ∗ 𝐸2 ∗ 𝑣12 ∗ 𝐺12,    𝑎𝑖 Є 𝐼𝑅                  (3.10) 

 

The minimized objective function was obtained by the quadratic mean variance 

between reference displacement field, �̅�(xi, yi), and displacement field gained from GA 

(Genetic Algorithm) [68]. 

                                             𝑦(𝐴) =
1

𝑁 
{∑ ‖𝑢𝑖

𝑗
− 𝑢𝑖‖

2
𝑁
𝑖=1 }                                     (3.11) 
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3.5 Genetic Operators 

Researchers are making effort to develop GAs (Genetic Algorithm) to enhance their 

efficiencies and for better adaptation of different optimization problems [69]. Keeping 

in mind, numerous advances have been suggested in a group of elastic parameters that 

will be explained in order: 

 Selection 

Rendering to the objective functions values, after ranking of solutions, the total number 

n of possible solutions are further divided in three groups that contained an even number 

of results, 𝑛𝑇 , 𝑛𝑀 , 𝑛𝐵 , explained in Figure 7. According to the approach used in the 

selection operator, 𝑛𝑇    solutions from 𝑆𝑇  subgroups may combine together or with 

whom, who is belonging to 𝑆𝑀, succeeding a random logic and ensuing in 𝑆𝑇 subgroups 

possible solutions. Bigamy can occur among the solution’s group.  𝑆𝑀, then gives two 

set of 𝑛𝑀𝑆and 𝑛𝑀𝑖 solutions. These two are coupled together. This combination is 

randomly generated, but unlike the preceding set, operate except the existence of 

bigamy. 

 

 

Figure 4 Selection Operator 
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 Crossover  

This operator is responsible for the consolidation of genetic material of a formerly 

formed group of results, made by the group of chromosomes, which turns to a list 

joining pairs, chaotically shaped as open in Selection. Crossover Operator begins 

creating an arbitrary quantity, 𝑟𝑖 amongst the varieties of span of design string as shown 

in Figure 8. 

 

Figure 5  Crossover Operator 

 

The number, 𝑟𝑖 is applied to designate the place of cross site in coupling strings. 

Previously, entire gene ideals from one coupling element to the child section till, 𝑟𝑖 the 

long-term sub string is derived from the other coupling element. Offspring generation 

increases the design space investigation, like, that resembles to an uninterrupted 

searching of global optimum.   
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 Mutation 

Mutation operator is performed through arbitrarily flipping a gene in a chromosomes 

of a recently created results. It works with a predefined probability pm.  

 

 

Figure 6  Mutation flipping gene 

 

Therefore the Mutation consents the relocation of evidence ultimately vanished in 

Crossover, approves the penetrating of solution that further narrates to search space. 

This has a tributary status so it has attributed a small possibility to take place.  

 Elimination  

 

Figure 7  Elimination 

After the conclusion of Selection, Crossover and Mutation operator, Fitness of novel 

descendant’s solution is assessed. This gratitude lets the achievement of solution 

ranking, confirming the accessory of greater number of positions and an order as shown 
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in Figure 10. The topping of a new result to a high position in ranking, forbid their 

elimination over “Natural Selection”.  

Uninterruptedly, all results that consist of the half inferior place from list specified in 

Figure 10. This operation put on the of individual’s natural selection, substitute as a 

natural agent for the removal of individual that are less fit [70].  

3.6 Stopping Criteria 

Stopping criteria was developed in terms of relative error for each elastic parameter and 

large set of generations with uninterrupted fitness value. The algorithm convergence is 

attained when relative error in used values are very close or less than 22% [71].   

Summary 

In the proposed study an attempt is made to find out the preferable approach for the 

non-destructive characterization of laminated composites depending on laboratory 

facilities. On that reason, a static approach using the off-axis tensile tests and an inverse 

procedure based on the planning of experiments methodology, are applied for 

determination of elastic properties of laminated composite plates.  

The recommended numerical method is built on FEA (Finite Element Analysis) and 

EA (Evolutionary Algorithms) supported by experimental results. The idea is to 

determine the optimal estimation of the model parameters by minimizing a selected 

measure-of-fit between the responses of the tested system and the numerical model. 

The objective is to obtain the four independent elastic engineering constants for an 

orthotropic medium, based on the measurement of a heterogeneous displacement field. 
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Chapter 4 
 

IMPLIMENTATION OF EVILUTIONARY 

ALGORITHM 
 

The proposed approach for identification of mechanical properties of composite 

laminates is addressed according to the following steps:  

 

 

 

Figure 11 Flowchart of proposed approach for identification of mechanical properties 

 

4.1 Implementation of UDM (Uniform Design Method)  

Using the UDM (Uniform Design Method) a set of design points belonging to the 

interval  ,i i i i        is generated covering a domain centred at mean reference 
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values of the design variables. This method enables a uniform exploration of the domain 

values necessary in the development of ANN (Artificial Neural Networks) 

approximation model. The mechanical properties obtained from experimental tests are 

considered the mean reference values, i , for composite laminates. 

 
Table B: Reference values obtained from experiment [68] 

 

Longitudinal elastic modulus, E1 20.33 GPa 

Transversal elastic modulus, E2 20.03 GPa 

In-plane shear modulus, G 3.843 GPa 

Poisson ratio, v 0.16 

 

The UDM (Uniform Design Method) points are considered as experimental input 

values to be used in the ANN (Artificial Neural Networks) learning method. A number 

of 27 training data sets is selected inside the interval  0.06 , 0.06i i i i     , with 

mean reference value i  set as a design variable for each mechanical property 

considered in the proposed approach.  

The mean reference value, i  is the elastic constant value obtained from experimental 

tests and corresponds to UDM design point number 14 in Table A. After considering 

Table 
10

27
(27 )U  of the UDM (Uniform Design Method), columns 1, 4, 6 and 9 requisite 

nomination rendering to the certain accessory. Table C give four variables and 

discrepancy ( ) 0.1189n,P  . Then the interval  0.06 , 0.06i i i i      is equally 

discretized with 27 points and, using the integer code format, the definite configuration 

for 1 2= [ , , , ]E E G π  is obtained, as shown in Table D.  
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Table C:  UDM points in sequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 UDM points in sequence 

Design points E1  (E+10) E2 (E+10) G12 (E+09) v 

1 1.911020 1.882820 3.612420 0.150400 

2 1.920403 1.892065 3.630157 0.151138 

3 1.929786 1.901309 3.647894 0.151877 

4 1.939169 1.910554 3.665631 0.152615 

5 1.948552 1.919798 3.683368 0.153354 

6 1.957935 1.929043 3.701105 0.154092 

7 1.967318 1.938288 3.718842 0.154831 

8 1.976702 1.947532 3.736578 0.155569 

9 1.986085 1.956777 3.754315 0.156308 

10 1.995468 1.966022 3.772052 0.157046 

11 2.004851 1.975266 3.789789 0.157785 

12 2.014234 1.984511 3.807526 0.158523 

13 2.023617 1.993755 3.825263 0.159262 

14 2.033000 2.003000 3.843000 0.160000 

15 2.042383 2.012245 3.860737 0.160738 

16 2.051766 2.021489 3.878474 0.161477 

17 2.061149 2.030734 3.896211 0.162215 

18 2.070532 2.039978 3.913948 0.162954 

19 2.079915 2.049223 3.931685 0.163692 

20 2.089298 2.058468 3.949422 0.164431 

21 2.098682 2.067712 3.967158 0.165169 

22 2.108065 2.076957 3.984895 0.165908 

23 2.117448 2.086202 4.002632 0.166646 

24 2.126831 2.095446 4.020369 0.167385 

25 2.136214 2.104691 4.038106 0.168123 

26 2.145597 2.113935 4.055843 0.168862 

27 2.154980 2.123180 4.073580 0.169600 
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Table D:  Input experimental Values used in ANN learning process 

 

Input experimental values used in ANN learning process 

E1  (E+10 Pa) E2  (E+10 Pa) G  (E+09 Pa) 
 
ѵ 

1.911020 1.975266 3.860737 0.168123 

1.920403 2.076957 3.630157 0.165908 

1.929786 1.919798 3.896211 0.163692 

1.939169 2.021489 3.665631 0.161477 

1.948552 2.123180 3.931685 0.159262 

1.957935 1.966022 3.701105 0.157046 

1.967318 2.067712 3.967158 0.154831 

1.976702 1.910554 3.736578 0.152615 

1.986085 2.012245 4.002632 0.150400 

1.995468 2.113935 3.772052 0.168862 

2.004851 1.956777 4.038106 0.166646 

2.014234 2.058468 3.807526 0.164431 

2.023617 1.901309 4.073580 0.162215 

2.033000 2.003000 3.843000 0.160000 

2.042383 2.104691 3.612420 0.157785 

2.051766 1.947532 3.878474 0.155569 

2.061149 2.049223 3.647894 0.153354 

2.070532 1.892065 3.913948 0.151138 

2.079915 1.993755 3.683368 0.169600 

2.089298 2.095446 3.949422 0.167385 

2.098682 1.938288 3.718842 0.165169 

2.108065 2.039978 3.984895 0.162954 

2.117448 1.882820 3.754315 0.160738 

2.126831 1.984511 4.020369 0.158523 

2.136214 2.086202 3.789789 0.156308 

2.145597 1.938288 4.055843 0.154092 

2.154980 2.030734 3.825263 0.151877 
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4.2 Implementation OF FEM Using Ahmad Shell Element 

Method 

For each UDM (Uniform Design Method) design point, the displacement field, u is 

obtained as a reference using the same experimental testing conditions. The 

displacement field used as a reference is created by FEM (Finite Element Method) 

considering the specimen geometry, the experimental loading and boundary conditions 

[72]. In the FEM input find the connectivity of each element (total eight nodes per 

element). There are 20 elements and a total of 79 nodes. The element uses three 

translations and two rotations (5 degrees of freedom per node). The Ahmad degenerated 

shell element has an implicit procedure to define the shell thickness: is defined upper 

coordinates and lower coordinates at each node. Using these coordinates are calculated 

the local shell thicknesses. Further the 2D integration this FEM use an integration 

procedure along the thickness of the shell. It is used the original Ahmad developments 

together further changes to avoid locking phenomena. There are some drawbacks (as 

shear locking) that were studied by several authors. The version used in our approach 

is immune to shear locking for example [73]. 

 

Figure 12 Reference displacement field generated by “Draw mesh” along x-axis 
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In the above figure the XX axis (longitudinal) displacement due to traction applied load 

is plotted. The displacement corresponds to UDM (Uniform Design Method) design 

point number 14 in figure 12. 

 

 

Figure 13 Displacement field generated by Ansys 

In the proposed approach the analysis is performed using the degenerated Amahd shell 

element [74]. This displacement field treated as experimental data used to rectify the 

numerical method suggested in this work. The BC (Boundary Conditions) used in the 

numerical model are the rigid and non-rotating testing machine grips. 

4.3 Implementation of ANN (Artificial Neural Network) 

An artificial neural network ANN (Artificial Neural Network) is established grounded 

on supervised evolutionary learning. The formerly produced UDM (Uniform Design 

Method) design points and their calculated output response values are used as input and 
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output configurations in the learning procedure of the optimal topology of ANN 

(Artificial Neural Network).  

In the ANN development a weight value is associated with each synaptic connection 

between processing units (PEs) that is defined as the connection importance as shown 

in Figure 13. The weight value acts as a multiplicative filter together with the activation 

procedure performed by an appropriated function.  

 

Figure 14 Processing units of ANN 

  

The ANN architecture is formed by several layers of neurons and different matrices 

with synaptic weights can be identified as linkage elements between layers. Learning 

of ANN occurs while modification of connection weight matrix is undertaken at the 

learning process. 

The surrogate model is based on ANN (Artificial Neural Network) developments using 

planned input/output patterns of results supported by UDM (Uniform Design Method). 

The proposed ANN (Artificial Neural Network) is organized into three layers of nodes 

(neurons): input, hidden and output layers. The linkages between input and hidden 

nodes and between hidden and output nodes are denoted by synapses. These are 

weighted connections that establish the relationship between input data 
inp

i
D  and output 

data
out

j
D . In the developed ANN (Artificial Neural Network), the input data vector inpD  

is defined by a set of values for design variables  , which are the mechanical properties 

of composite laminates, such as elastic or strength properties. In this methodology, 

respective set of values for the design variable vector   is nominated using the UDM 

(Uniform Design Method). The conforming output data vector outD  comprises of the 

displacements, u, measured along longitudinal axis of symmetry of the specimen used 
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in experimental tests. Figure 14 shows the topology of the ANN (Artificial Neural 

Network), display the input and output parameters. Every configuration, comprising of 

an input and output vector, wants to be normalized to evade numerical error propagation 

throughout the ANN (Artificial Neural Network) learning procedure. Which is attained 

using data normalization (input data between 0.01 and 0.99). 

 

Figure 15 Artificial Neural Network topology 

 

 Performance evaluation of ANN (Artificial Neural Network) 

The difference between ANN (Artificial Neural Network) and already defined output 

data is used to regulate the learning procedure, which is proposed to attain a complete 

process model. ANN (Artificial Neural Network) is introduced by set of input data, it 

utilizes weights of synapses and biases value to yield reliable simulated results by a 

process known as learning.  

Each group of input data weight matrix (p)M  and biases (p)r , output is acquired. 

Simulated results of output are related with previously explained values to approximate 

the error, which is further minimized through optimization process. The equations for 

error: 

 Mean relative error 

                         𝐸1( 𝑴, 𝒓 ) =
1

2𝑁𝑒𝑥𝑝
 ∑ (|

�̅�𝑒𝑥𝑝−�̅�𝑠𝑖𝑚

�̅�𝑒𝑥𝑝
| + |

ß𝑠
𝑒𝑥𝑝

− ß𝑠
𝑠𝑖𝑚

ß𝑠
𝑒𝑥𝑝 |

𝑁𝑒𝑥𝑝
𝑖=1

)                     (4.1) 
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 Absolute error 

                              𝐸𝟐(𝑴,𝑹) =  ∑ (|�̅�𝑒𝑥𝑝 − �̅�𝑠𝑖𝑚|
𝑁𝑒𝑥𝑝
𝑖=1

+ |ß𝑠
𝑒𝑥𝑝 − ß𝑠

𝑠𝑖𝑚 |)                 (4.2) 

Where, 𝑁𝑒𝑥𝑝= number of experiment measured in UDM (Uniform Design Method) 

method, subscripts exp and sim represent the experimental and simulated data. The error 

obtained from the above equations and equation for biases [58] are reflected in ANN 

(Artificial Neural Network) learning process.  

 Evolutionary process based  ANN (Artificial Neural Network)  

The adopted supervised learning process of the ANN (Artificial Neural Network)  based 

on a Genetic Algorithm (GA) uses the weights of synapses, (p)M , and biases of neural 

nodes at the hidden and output layers, (p)r , as design variables. A binary code format is 

used for these variables.  

The number of digits of each variable can be different depending on the connection 

between the input-hidden layers or hidden-output layers. The formulation of 

optimization problem related to the ANN (Artificial Neural Networks) learning 

procedure is grounded absolute and relative errors minimization obtained through the 

input and output configurations obtained for the UDM (Uniform Design Method) 

design points. Biases related to regularization in the hidden/ output neurons is intricate 

in the learning scheme and soothing and accelerating the numerical practice.  

In the meantime, the objective of evolutionary search is to improve a FIT global fitness 

function accompanying with ANN (Artificial Neural Network) presentation, the 

optimization problem is assumed as: 

                       𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹𝐼𝑇 = 𝐾 − [∑ 𝑐𝑘 
3
𝑘=1 𝐸𝑘(𝑴, 𝒓) + 𝑐4Ґ(𝒓

(1), 𝒓(𝟐))]         (4.3) 

Where,  

K = arbitrary constant to acquire positive fitness 𝑐𝑘 = weight constants for 

regularization, and Ґ(𝒓(1), 𝒓(𝟐)) = mean quadratic values for biases [58]. These ANN 

(Artificial Neural Networks) simulated output results are associated with the 

experimental (FEM) output values (
)(FEMexp

iu
 i=1… n) attained for the same input 

data to estimate the variance (or error), which must be diminished during the learning 
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procedure [25]. The supervised learning of the suggested ANN (Artificial Neural 

Network) is based on numerous measures of the error with the aim to accelerate and 

stabilize the learning process. The first measure is the root-mean-squared error defined 

as  

 
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                                      (4.4) 

Where 
expN  is the number of experiments considered in the set of design points of 

UDM and the superscripts sim and exp denote the simulated and experimental data of 

displacement field? To reinforce the error minimization a second measure is introduced 

based on the following mean relative error component: 
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The influence of the biases of the neurons of the hidden and output layers is also 

included to stabilize the learning process: 
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(4.6) 

Where 
hidN   and 

outN  are the number of neurons of the hidden layer and of the output 

layer, respectively. The error measures presented from Equations (4.4) and (4.5) and 

biases component in Equation (4.6) are aggregated using the following formula: 

   321
)2()2()1()1(

1 cREcRMSEc,,, rMrM
                      (4.7) 

Being the constants kc  used to regularize the numerical differences between the three 

error terms aiming to stabilize the numerical procedure. The weights of the synapses 

and biases can be changed until the value of 
1  falls within a prescribed value.  

The ANN supervised learning procedure is based on the minimization of the function 

defined in equation (4.7) using the weights of synapses ( )pM , and biases of neural nodes 
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at the hidden and output layers ( )pr , as design variables as shown in Figure 14. The 

search for ANN optimal configuration is performed by a Genetic Algorithm denoted

(1)GA . At this stage a population of solutions for ANN configuration denoted by ( )tP  

is considered at each t-generation. 

A binary code format is used for these variables. The number of digits of each variable 

can be different depending on the connection between the input-hidden layers or 

hidden-output layers. The domain of the learning variables ( )pM  and ( )pr  (p=1 and p=2) 

and scaling parameter   can be tuning together the code format of design variables of 

the ANN learning procedure. The optimization problem formulation associated with 

the ANN learning process is based on the minimization of the function defined in 

Equation (4.7) without constraints, as follows  

Maximize  (1) (1) (1) (1) (2) (2)

1 , , ,FIT K  M r M r        over   ( )pM  and ( )pr               (4.8) 

Subject to ( ) ( )

1,p p M r     (p=1 and p=2), 

where 
1  is the domain of design variables in learning procedure, (1)FIT  is the fitness 

function in GA search to obtain the optimal ANN configuration, opt

ANNP  for the weight 

of synapses and biases in neurons. Since the selection operator of GA is fitness-based 

the function 
(1)FIT  must take positive values. So, the constant 

(1)K  must be large 

enough to obtain always positive fitness values.  

4.4 Inverse Optimization through GA (Genetic Algorithm) 

The experimental output data obtained for displacement field is used as reference in the 

inverse optimization problem. The design variables of the optimization problem are the 

independent elastic engineering constants E1, E2, G and Poisson’s ratio v.  

The objective is to obtain the four independent elastic engineering constants for an 

orthotropic medium, based on the measurement of a heterogeneous displacement field. 

The optimal estimation of the model parameters is performed by minimizing an error 

functional defined as the difference between the experimental measurements and the 

simulated output results from ANN approximation model.  
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4.6 Error Minimization 

By minimising the error functional the identification parameters i.e., elastic properties, 

are obtained. The minimisation procedure is based on a genetic algorithm (GA). The 

GA run arbitrarily created an individual’s population called the initial population. Using 

a genetic operators like selection and crossover and mutation, evolutionary search 

procedure is achieved. 

4.5 Learning and Inverse Design Procedures Based on GA 

(Genetic Algorithm) 

GA (Genetic algorithms) denoted by (1)GA  and (2)GA  used in both phases of the 

recommended procedure have the alike group. But, parameters labelled in independent 

mode are helpful in different genetics.  

GA (Genetic algorithms) are evolutionary search approaches based on the survival of 

the fittest and natural selection theory presented by Charles Darwin. Both proposed 

(1)GA  and (2)GA  mostly perform on three parts: (1) coding/decoding design variables 

into strings; (2) weighing the fitness of individual solution string; and (3) implementing 

genetic operators to crop the next generation of solution strings in a new population. In 

this paper, four basic genetic operators, (1) Selection, (2) Crossover, (3) Elimination 

and (4) Replacement from control similarity and Mutation are utilized. An elitist tactic 

recognised on conservation of the best-fit group transfers the best-fitted solution into a 

new population for the next generation.  

The operators are applied in the following sequence: 

 Step1: Initialization. Using a uniform probability distribution function, the 

initial population is arbitrarily created 

 Step 2: Selection. The population is ranked according to individual fitness. The 

elite group is found counting highly-fitted individuals. The selection of the 

couple of parents 
1p  and

2p , is fitness-based: one from the best-fitted group 

(elite) and another from the least fitted one. The current population Sk  is shifted 

to an intermediate stage gained by the Crossover operator where they will link 

the offspring group B. 
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 Step 3: Crossover. Consuming genes from both progenitors, crossover operator 

transforms the couple of chromosomes parents into a new chromosome 

(offspring). The offspring genetic material is acquired using the multi-point 

combination technique known as parameterized uniform crossover .This is 

functional to both binary string of the couple selected chromosomes 
1p  and

2p . 

Then, this Crossover is applied with a predefined probability to choose the 

offspring genetic material from the highest fitted chromosome (offspring) .The 

offspring group B created by recombination will be joined to the original 

population Sk  generating the enlarged populationSk B . 

 Step 4: Deletion/Replacement by similarity control. Keeping into account the 

fitness the enlarged population of solutions Sk B  is ranked. Then, the 

similarity control is performed on the genes of separate design variables and 

after on all of them following an updating scheme throughout the evolutionary 

progression. The objective is to evade the existence of very similar individuals 

into the population decreasing the endogamy properties of recombination. This 

is followed by deletion of solutions with similar genetic properties and 

subsequent replacement by new haphazardly generated individuals. The new 

enlarged population Sk B  is graded and the individuals with low fitness are 

omitted. Now, the dimension of the current population is not as much of the 

original one. The original size population will be enhanced after taking into 

account a group of new solutions attained from the Mutation operator. 

 Step 5: Mutation. The Mutation genetic operator is used to overwhelm the 

problem encouraged by Selection and Crossover operators where some 

generated solutions have a great percentage of equal genetic material in the 

offered approach. This is linked with an absence of population diversity 

inducing premature convergence of the evolutionary process by anchorage at 

local minima. So, pointing to recover the diversity level a chromosome set 

group which genes are created in an arbitrary way is presented into the 

population. This operation is called Implicit Mutation and is fairly different 

from classic practises where a condensed number of genes are transformed. 

Undeniably, this group of chromosomes will be recombined with the remaining 

individuals into the population during next generations. The new population 
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1Sk  is achieved and the evolutionary process will last until the stopping criteria 

are touched after mutation. 

 Step 6: Stopping criterion. The stopping criterion used in the convergence 

analysis is centred on the relative variation of the mean fitness of a reference 

group through a fixed number of generations and the feasibility of the equivalent 

solutions. This reference group usually is the elite group. The search is stopped 

if the mean fitness of the reference group does not evolve after a finite number 

of generations. Otherwise, the new population 1Sk  evolution continues and the 

process goes on to Step 2. 

Figure 15 shows the flow diagram of both genetic algorithms (1)GA  and (2)GA .  

 

 

 

 

Figure 16 Evolution steps and genetic operators of 
)1(GA  and 

)2(GA  at each k-th generation. 
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Figure 17 learning and inverse design procedures 
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Chapter 5 
 

RESULTS AND DISCUSSION 

5.1 Experimental Details 

The previous literature show that there are authors who proposed  a micromechanical 

model for analyzing the orthotropic elastic properties of 8 satin weave composite.  

These proposed models [72] are further restricted by three limitations i) yarn is 

modelled as a homogenous solid and material properties are independent of 

manufacturing process ii) exact post cure geometry of weave is not considered iii) they 

ignore the effect of void content on yarn and matrix properties.  But these cannot be 

ignored as manufacturing process parameter have a strong effect on post cure geometry, 

volume fraction, within yarn and void content. 

 So, the model proposed in this paper study the effect of all the parameters which 

were discussed above. This FE Based micromechanical model no only consider the 

correct post cure geometry but also include the volume fraction within yarn and void 

contents. 

Three sets of experiments were performed, that are 

 Tensile and shear test for mechanical properties testing 

 Non-destructive estimation of UC (unit cell) architecture of cured composite 

with the help of X-ray micro- tomography (XMT) 

 Characterization of physical properties including void content and volume 

fraction 

In tensile test the specimen is cut using the quickstep method. Poisson ratio is calculated 

using the strain gauges and displacement along the tensile force axis was measured 

using extensometer. Finally the graphical representation of stress and strain is given. 

Shear modulus is obtained by rail shear test method. X-ray micro tomography is used 

to clearly imaging the reinforcement microstructures of the whole sample in the final 

cured state not limited in depth. The density of composite is computed with mettler 

Toledo analytical balance.  The average density of specimen is 1.595 gram per cubic 

centimeter with standard deviation of .0088. Volume fraction is measured using the 
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ASTM standard. The fraction of fibers present in yarn is defined as the fiber volume 

fraction of yarn. Volume mathematical relation is used to calculate the volume fraction 

of fibers in yarn assuming that the shape of yarn is lenticular. Measurement taken from 

the XMT are used to create a realistic geometric model. In this study the XMT images 

are utilized to identify the repetitive pattern in the given composite. 

 It is assumed during developing model that constituent materials are assumed 

to be free of cracks and bonded perfectly to each other before and after loading. TexGen 

a geometric modeling software is used to generate a realistic geometries of textile 

composites. FE analysis are performed using the FE software Abaqus. The author 

assumed that the UC is subjected to quasi static loading and undergoes small 

deformation. Presented governing equations which shows UC fulfil the conservation 

and mass momentum equation.  Constitutive model, UC effective response for stress 

and strain,  analytical model for yarn effective properties , periodic boundary 

conditions, FE homogenization, all these methods are completely discussed in this 

paper to describe the model validation and result various simulated cases. Before further 

analysis the micromechanical model is subjected to the sanity check. Which was done 

by setting all the input properties of both constituents. The input material properties of 

yarn are obtained by considering the fiber volume fraction effects due to resin 

infiltration and presence of voids. Comparison of different homogenization strategies 

depending upon the material input data showed that there is a good interrelation 

between the elastic properties obtained from the FE simulation and available 

experimental data for the case where the fiber volume fraction within yarn and void 

content is accounted analytically homogenization process. Finally the author reached 

to a result that a realistic model of cured composite is required to accurately find out 

the effective properties of 8 harness strain weave composites. Moreover it is also 

concluded that fiber volume fraction within the yarn and void content effects on elastic 

material properties can be accounted for analytically using the methodology described 

in this paper for the 8-harness satin weave composites [72]. 

An off axis tensile test was chosen to calibrate the numerical method using 8-harness 

satin weave glass fiber reinforced phenolic (GFRP) composite. The tensile tests were 

performed on composite (Primco SL246/40= according the specifications set out in ISO 

527-4:1997(BS 2782-3) shown below. 
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Figure 18 Specimen geometry and dimensions, tensile test, BS EN ISO 527-4 / BS 2782-3 

 

Structural investigation is achieved for the input values by using Table 2, 27 input and 

output formations are developed and used in ANN (Artificial Neural Network) learning 

process. For every, UDM (Uniform design Method) design point, the longitudinal 

displacements, u, are obtained by FEM considering the specimen geometry, the 

experimental loading and boundary conditions.  

A number of 5 (five) neurons are deliberated for the hidden layer of the ANN (Artificial 

Neural Network) topology. The ANN (Artificial Neural Network) learning procedure 

is expressed as an optimization problem with 55(fifty five) design variables 

corresponding to 45 (forty five) weights of synapses and 10 (ten) biases of neural nodes. 

The ANN (Artificial Neural Network) based GA (Genetic Algorithm) learning 

technique is accomplished using a population of 21 individuals/solutions. The elite and 

mutation groups consist of 7 and 4 solutions, respectively (Conceição António, 2001). 

The binary code format with 5 digits is accepted for both designing the values of the 

weights of synapses, (p)M , and biases of neural nodes at the hidden and output layers, 

(p)r . The learning development is resolved after 30000 generations of the GA.  The 

ANN learning process is performed using a genetic algorithm as referred in flowchart 

of Figure 11. The evolutionary history is shown in Figure 12. 

The optimal estimation of the model parameters is performed by minimizing an error 

functional defined as the difference between the experimental measurements of 

longitudinal displacements and the simulated output results calculated from optimal 

ANN approximation model. The search based on GA performs during 10000 

generations. In this case the genetic parameters are equal to the previous ones used in 
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ANN learning process. The results show good convergence of the proposed 

methodology. 

 
 

 
Figure 19 Absolute and relative errors evolutions in learning process of ANN-based on GA 

 

 

 

Figure 20 Comparison of simulated and experimental elastic properties 
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The results for the inverse optimization problem corresponding to 5th and 6th steps of 

the proposed approach are presented in Table E. The design variables of the 

optimization problem are the independent elastic engineering constants E1, E2, G and 

v. The objective is to obtain the four independent elastic engineering constants for an 

orthotropic medium, based on the measurement of the displacements field along 

longitudinal axis of symmetry of the experimental testing specimen.  

Table E: Comparison between experimental and simulated values 

 

Mechanical Properties E1 (E+10 Pa) E2 (E+10 Pa) G (E+09 Pa) Ѵ 

Experimental values  2.05100 2.42800 3.855 0.25000 

Numerical Results      2.03300 2.00300 3.84300 0.16000 

Simulated values 2.00546 1.97527 3.86074 0.15345 

Relative error (%) b/w 
simulated 

And Experimental values 
1.35 1.38 0.46 0.66 

Summary 

The proposed inverse approach combining numerical and experimental results with 

measurement of full field displacement, will permit the identification of all the in plane 

elastic properties from experiments. The off axis tensile test was selected to calibrate 

the numerical method using an 8-harness satin weave glass fiber reinforced phenolic 

(GFRP) composite. Instead the use of a non-destructive technique an alternative hybrid 

approach is proposed to obtain the field displacement. In this way a displacement field 

used as a reference is created by FEM (Finite Element Method) considering the loading 

and boundary conditions, and the mechanical properties obtained from experimental 

tests.  

The analysis is performed using the degenerated Amahd shell element [74]. This 

displacement field acts as an experimental data used to calibrate the numerical method 

proposed in this work. Rigid and non-rotating testing machine grips are used as a BC 

(Boundary Conditions) applied to the numerical model. Minimization of functional 

identification parameters i.e., elastic properties, are obtained. The minimisation 

technique is built on a GA (Genetic Algorithm).The GA (Genetic Algorithm) initialize 

with randomly generated individual’s population are called the initial population.  
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With the application of selection, crossover and mutation evolutionary search 

development is performed. Taking into account the off axis tensile tests inspected in 

this work, the experimental displacement field was substituted by the numerically 

determined nodal displacement values through the Ahmad finite element. The 

mechanical properties of the composite launch the association between the loads 

applied to the off axis and displacement field. Results show good convergence of the 

proposed methodology. An alternative objective function based on strain analysis is 

also analyzed.  
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Chapter 6 
 

CONCLUSION OF RESEARCH 
 

An inverse approach combining numerical and experimental results with full field 

displacement measurements used as a reference data, will permit the identification of 

all the in plane elastic properties from experimental trials. As an alternative the use of 

a non-destructive technique an alternative hybrid approach is proposed to obtain the 

field displacement. Taking into account the off axis tensile tests inspected in this work, 

the experimental displacement field was replaced by the numerically determined nodal 

displacement values obtained from the FEM (Finite Element Method) using 

degenerated Ahmed Shell Element Method. The use of a surrogate model consisted on 

an ANN (Artificial Neural Network) supports to establish the relationship between the 

elastic properties and the displacement field avoiding the exhaustive calculations based 

on FEM (Finite Element Method). 

ANN (Artificial Neural Network) developments using planned input/output patterns of 

FEM (Finite Element Method) results supported by UDM (Uniform Design Method) 

structured data. The ANN (Artificial Neural Network) surrogate model is built through 

a learning procedure based on evolutionary search. The ANN (Artificial Neural 

Network) is a nonlinear dynamic modelling system inspired by our understanding and 

abstraction on the biological structure of the human brain. Its architecture and operating 

procedures are based on a large number of highly interconnected processing units 

denoted by neurons and the linkages are similar to the brain synapses as in biological 

sense. 

The optimal estimation of the model parameters is performed by minimizing an error 

functional defined as the difference between the experimental measurements and the 

simulated output results from ANN (Artificial Neural Network) approximation model. 

By minimising the error functional the identification parameters i.e., elastic properties, 

are obtained. The minimisation procedure is based on a GA (Genetic Algorithm). The 

results show good convergence of the proposed methodology for identification of 

mechanical properties of composite materials. 
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Recommendations  

In the present research authors considered the full field displacement as a reference field 

to proceed with the inverse approach, for future work the stress fields and strain fields 

can be used as a reference following the same methodology used in this work. 

In order to develop the existing methodology in this work additional progresses must 

be prepared for improved performance. Different strategies of crossover can be 

developed to execute the convergence. Alternative objective function evaluation that 

are correspondingly workable to elastic properties. Furthermore, ANN (Artificial 

Neural Network) other than supervised learning can be used for more accurate results.  

Moreover, revisions have been done to recognize interfacial properties by means of 

FEMU (Finite Element Model Updating Method). Measurement uncertainties 

happening precisely in interfacial area can badly effect the related identified properties. 

Even though the displacement field used as a reference displacement field in this thesis 

was calculated numerically, in future for further advancements stress/strain fields could 

be obtained. 
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